
Srdan Ljepojević

Web application for alignment of
sentence pairs from parallel corpora

Bachelor’s Thesis
to achieve the university degree of

Bachelor of Science

Bachelor’s degree programme: Computer Science

submi�ed to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Roman Kern

Institute for Interactive Systems and Data Science
Head: Univ.-Prof. Dipl.-Inf. Dr. Stefanie Lindstaedt

Graz, January 2021

A�idavit

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly indicated all material
which has been quoted either literally or by content from the sources used. �e text
document uploaded to tugrazonline is identical to the present bachelor‘s thesis.

Date Signature

ii

Abstract

Text simpli�cation as a �eld is steadily increasing, but a lot of the problems are
still far from being solved. �e application which will be described in this thesis,
aims to help with the one of the problems of text simpli�cation, which is gathering
enough data to train the models for automatic text simpli�cation. �is applica-
tion should provide the framework for easier visualization, e�ortless editing and
exporting of the annotated data, from articles wri�en in German. �e process of
development and important design decisions were noted in the thesis, together
with functional requirements and use cases. Main focuses of the application, during
the development, was performance, easiness of use for novice users and correctness
of the outpu�ed data. To test these quality a�ributes and to evaluate if functional
requirements are ful�lled, user testing was conducted. �e results showed that all
of the set requirements were ful�lled and users highly praised the performance
and usability of the system, with some minor remarks as to how the system can be
further improved.

iii

Contents

Abstract iii

1. Introduction 1

2. Related Work 3
2.1. Background . 3

2.1.1. XML . 3
2.1.2. XML DOM Parsing . 3
2.1.3. JavaScript . 6
2.1.4. React . 6
2.1.5. JSON . 7
2.1.6. Metadata . 7
2.1.7. Docker . 7
2.1.8. Spring Boot . 8
2.1.9. Promise based HTTP client 8

2.2. State of the Art . 8
2.2.1. Text simpli�cation . 8
2.2.2. Annotation tools for NLP 11

3. Use Cases & Requirements 13
3.1. Personas . 13
3.2. Use cases . 15
3.3. Functional Requirements . 16
3.4. Mockups . 17

4. Method 21
4.1. Concept . 21

4.1.1. Components . 21
4.1.2. XML importing . 22

v

Contents

4.1.3. Sentence matching . 22
4.2. Implementation . 22

4.2.1. Database . 22
4.2.2. Back-end . 23
4.2.3. Front-end . 27

4.3. Back-end API routes . 37

5. Evaluation 39
5.1. Data set . 39
5.2. Raw numbers . 40
5.3. User evaluation . 41

5.3.1. Participants . 41
5.3.2. Methodology . 42
5.3.3. Results . 43

5.4. Discussion . 47

6. Conclusions 49

A. Milestones 53
A.1. Timeline . 53
A.2. Listed . 54

B. Docker setup 55

C. Tasks 57

D. �estionnaire 59

Bibliography 63

vi

List of Figures

2.1. XML tree representation of the example XML �le from the data set 5

3.1. Alfred (icon made by photo3idea-studio from �aticon.com) 13
3.2. Alexander (icon made by photo3idea-studio from �aticon.com) . . 13
3.3. Helga (icon made by photo3idea-studio from �aticon.com) 14
3.4. Manfred (icon made by photo3idea-studio from �aticon.com) . . . 14
3.5. Ingrid (icon made by photo3idea-studio from �aticon.com) 14

4.1. Entity relationship diagram of the database 23
4.2. Screenshot of the frontpage . 30
4.3. Complete work�ow �owchart . 32
4.4. Article View page . 33
4.5. Import page . 35
4.6. Examples of Fail and Success toasts 36
4.7. Screenshot of the frontpage in dark mode 37

5.1. Age distribution of participants who did user evaluation. 41
5.2. Main �elds of study of participants who did user evaluation. . . . 42
5.3. Chart showing the answers of the participants to the questions

about the application they tested 44

A.1. GANTT chart . 53

vii

1. Introduction

Text simpli�cation is a process of making some text easier to understand while still
making it grammatically correct and without leaving out any important informa-
tion.

In the early days, motivation for text simpli�cation (TS) was to help systems
that use natural language as an input [5]. Such systems are for example parsers,
which sometimes failed if complex text was used. Additionally, Chandrasekar,
Doran and Srinivas [5] also mention systems which perform machine translation,
summarization and informational retrieval that could also bene�t from simpler
inputs.

Since then, some researchers focused their work towards helping speci�c target
groups for example children [6], non-native speakers, and low-literacy readers [2,
18]. Furthermore, in the research done by Cao et al. [3], it is shown that TS could
also be bene�cial to bridge the knowledge gap between laymen and experts. Text
simpli�cation is also useful for people with disabilities like autism [7], dyslexia
[13], or for people who su�ered brain damage (aphasia1) and cannot process the
language the same way as a healthy individual could [4].

TS is usually done with syntactic and/or lexical simpli�cation [16]. �e former
method includes the elimination of multiple embedded prepositional and relative
phrases, removing the passive voice and generally the replacement of longer sen-
tences with two or more shorter ones [4]. �e la�er approach includes replacing of
di�cult words with more common synonyms or adding the dictionary de�nition
to di�cult words [15].

�e survey, done by Shardlow [14], shows that the text simpli�cation as a �eld is
steadily increasing. Despite that, the problem of TS is far from being solved and
even though there are a lot of automatic methods for output evaluation (BLEU,

1https://en.wikipedia.org/wiki/Aphasia

1

https://en.wikipedia.org/wiki/Aphasia

1. Introduction

Flesch–Kincaid, SARI), these simpli�ed texts still need human intervention if they
are meant to be used in practice.

�e primary goal of this thesis is to help the researchers and language experts with
the evaluation of di�erent outputs produced by automatic text simpli�cation. �e
web application presented in this thesis can import data, display, side-by-side, the
original and the simpli�ed versions of the text, and export matching sentence pairs
from both texts. �ese sentence pairs are important as they will be used for model
training in the future. Moreover, it is possible to edit both simpli�ed and original
text.

�e source of the data that is used to develop and test this application is from APA
- Austrian Press Agency. �is data set consists of news articles in German, which
contains both complex and simpli�ed versions of the text. �e application which is
described in this thesis is not limited to this data. As long as there is dataset with
two levels of text complexity it is possible to implement a custom parser, which
transforms texts from data to a applications database.

Although the aim of this work is not to develop any new state-of-the-art algorithms,
which could solve some simpli�cation problem, it will provide the framework for
easier visualization, e�ortless editing and exporting of the annotated data.

2

2. Related Work

2.1. Background

2.1.1. XML

Extensible Markup Language (XML) 1 is a popular text-based format which is used
to store some arbitrary data. To be considered a genuine XML �le, the �le has to
follow some strict set of rules which were de�ned in speci�cations made by World
Wide Web Consortium. For example, there should only be one root element, all
opening tags must have a closing tags and should be nested correctly etc. If the XML
processor �nds any irregularities with the �le syntax, it is automatically �agged as
erroneous and the processing of the XML �le is stopped. �is might seem really
brutal, but this means that computer can read it reliably.

2.1.2. XML DOM Parsing

Even though there is a strict speci�cation about how a XML �le should look like,
there is no o�cial speci�cation as to how to actually access the data. One of
interfaces which is used is Document Object Model (DOM) 2. It is an interface
which is not bound to any speci�c language and is just an idea on how data from
the XML �le could be accessed. DOM represents data in a tree structure and each
node of that tree is a one piece of that document. �is is really useful, not only for
navigation, but also for visualization of HTML or XML documents, as looking at

1https://www.w3.org/standards/xml/core#uses (Accessed on: 2020-11-30)
2https://en.wikipedia.org/wiki/DocumentObjectModel (Accessed on:

2020-11-30)

3

https://www.w3.org/standards/xml/core#uses
https://en.wikipedia.org/wiki/Document_Object_Model

2. Related Work

the source code of these documents can be overwhelming, especially when there
are a lot of tags in the document.

XML DOM allows users to access elements and navigate the XML like a tree in all
directions (parent, siblings, children). �e Listing 2.1 shows a XML �le and Figure
2.1 its DOM tree representation. �is �le is taken from a dataset used in this thesis.
Some parts of the �le are removed and some parts cleaned up to make the code
more readable and to help with understanding. More about how useful it could be
to represent XML �le like a tree is discussed in Chapter 4.2.2.
<? xml v e r s i o n = ” 1 . 0 ” encod ing = ”UTF−8 ” ?>
<Documents>

<DOC TYPE= ” INSERT ” NAME= ” APA 20200615 APA0361 ” SRC= ”APA” RECDATE
= ” 20200615 ” LANG= ”GER”>
<HEAD>

<FELD NAME= ” TITEL ”>
<P ID= ” 1 ”>N a c h r i c h t e n l e i c h t v e r s t a e n d l i c h (i n der

S p r a c h s t u f e B1) − Audio =
</ P>

</ FELD>
<FELD NAME= ” INHALT”>

<P ID= ” 1 ”>S e i t Montag g e l t e n Lockerungen b e i der
M a s k e n p f l i c h t

</ P>
<P ID= ” 2 ”>Wien − Ab Montag g e l t e n d i e neuen Lockerungen

. . .
</ P>
<P ID= ” 3 ”>Die Masken− P f l i c h t i n O e s t e r r e i c h h a t t e am 3 0 .

Maerz begonnen
</ P>

</HEAD>
<PART ID= ” 1 ”>

<FELD NAME= ”MELDUNGSTYP”>
<P ID= ” 1 ”>U e b e r b l i c k</ P>

</ FELD>
</ PART>

</DOC>
<DOC>

<HEAD>
<FELD>

<P> . . .</ P>
</ FELD>
<FELD>

<P> . . .</ P>

4

2.1. Background

<P> . . .</ P>
</HEAD>
<PART>

<FELD>
<P> . . .</ P>

</ FELD>
</ PART>

</DOC>
</ Documents>

Listing 2.1: Cleaned up XML �le taken from the data set used to develop the application described
in this work

Figure 2.1.: XML tree representation of the Listing 2.1. �e rectangles with rounded edges represent
XML tags, while rectangles without rounded edges represent values of XML tags. �ere
is one root element with two DOC children nodes. Every DOC node represents one
language level of the article. DOC node consists of HEAD and PART nodes. Both of
these nodes have FELD nodes as children, the only di�erence is the a�ribute name.
Actual contents of the articles are stored in children nodes of FELD node with the name
”INHALT”. It is possible to access the article texts by using XML DOM parser and going
down the tree.

5

2. Related Work

2.1.3. JavaScript

JavaScript (JS) is a high level programming language, which is, along side HTML
and CSS, one of the core technologies of the World Wide Web 3. Building websites
with only HTML and CSS is possible, but these websites will be static, which means
that the data, which is displayed on the website, is hard-coded somewhere in the
�les. Including JavaScript into HTML makes the website dynamic, which means
that the website can show some interactive content, communicate with servers,
react to user input without reloading the website and a lot more.

2.1.4. React

React (React.js or ReactJS) 4 is an open-source JavaScript framework used for build-
ing graphical user interfaces for web applications. React is component-based 5,
meaning everything that is shown on screen, is some kind of component. Compon-
ents can be really primitive like Bu�ons, Lists, Forms, but these components can
then be combined into more complex ones, which can also have some state. Com-
ponents can also have really complex render methods, which means that depending
on the state of that component, di�erent elements can be displayed.

Further bene�t of using components is that it can easily be reused, which makes
programming in React really fast and clu�er free. If two components look the same,
but only have to display di�erent information, the same component can be reused
just with di�erent data, which is passed onto the component. Another bene�t of
using React as a tool for building user interfaces is that when some state of the
application changes, only components, which rely on it, are updated and rendered
to the screen again. �is provides a huge performance boost.

3https://en.wikipedia.org/wiki/JavaScript (Accessed on: 2020-11-30)
4https://en.wikipedia.org/wiki/React(webframework) (Accessed on:

2020-11-30)
5https://reactjs.org/docs/components-and-props.html

6

https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/React_(web_framework)
https://reactjs.org/docs/components-and-props.html

2.1. Background

2.1.5. JSON

JavaScript Object Notation (JSON) 6 is a text format based on JavaScript. Even
though it is based on JavaScript, it is completely independent and consists of data
structures like collections of name/value pairs and lists of values. Because a lot of
programming languages support these structures, it is a perfect format for storing
data. It is also easy for humans to read and write. Additionally, it is also easy for
machines to parse and generate.

2.1.6. Metadata

Metadata is ”data that provides information about other data” 7. In the application
described in this thesis, every article has metadata about the sentence pairs which
is then exported in a JSON �le. Every sentence pair consists of matching sentences,
but also a metadata �eld, which describes the score of sentence similarity, whether
it was matched by an algorithm or by a human, and more. Further information
about the JSON format, that this application uses is wri�en in Chapter 4.

2.1.7. Docker

Docker is an open source application which manages Docker containers. �ese
containers have all the dependencies, con�guration �les and more, which allow
applications, that are stored in them, to run on wide variety of machines. �is
solves one huge problem in development and deployment process, which is making
sure that the application works not only on developers local machine, but also on
other machines, servers etc. Placing an application into Docker containers and
con�guring them properly solves this problem, because Docker guarantees that the
environment which was set once, will always be the same, no ma�er the underlying
system.

6https://www.json.org/json-en.html (Accessed on: 2020-11-30)
7https://www.merriam-webster.com/dictionary/metadata (Accessed

on: 2020-11-30)

7

https://www.json.org/json-en.html
https://www.merriam-webster.com/dictionary/metadata

2. Related Work

2.1.8. Spring Boot

Spring 8 is one of the most popular open source Java frameworks in the world, that
provides Java with some additional features and modules, making programming in
Spring easier and faster.

Spring Boot is an extension of the Spring framework, which further simpli�es
programming. Even though Spring solves some issues with overly complicated
con�guration of Java, Spring Boot takes this to another level by providing the
default con�gurations and some ’starter’ dependencies. �is means that for many
use cases, the developers do not need to �ddle with the setup, but can get up and
running in a ma�er of minutes. Moreover a lot of stu� works ”out of the box”,
without any redundant code or external libraries.

2.1.9. Promise based HTTP client

Promised based HTTP clients receive promises a�er the client sends requests. �ese
promises 9 can have three states: Pending, Ful�lled and Rejected. Ful�lled promises
means that the value that is promised is returned to the client, rejected means that
the reason for failure is returned and pending means that the client has to wait for
the answer.

2.2. State of the Art

2.2.1. Text simplification

Text simpli�cation, as the name suggests, should simplify texts as a whole, but
most of the research which was done focused on simpli�cation of the individual
sentences, which could in fact make the whole texts easier to understand. �is

8https://www.baeldung.com/spring-vs-spring-boot (Accessed on: 2020-
11-30)

9https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/GlobalObjects/Promise (Accessed on: 2021-01-03)

8

https://www.baeldung.com/spring-vs-spring-boot
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

2.2. State of the Art

approach allows for easier data acquiring, which is really important if automatic
algorithms are to be developed.

Datasets Most popular datasets used to measure the performance of the text
simpli�cation are PWKP and Turk Corpus.

PWKP is a dataset collected by Zhu, Bernhard and Gurevych [23]. Data was acquired
from more than 65 thousand articles from Wikipedia and Simple Wikipedia, which is
aimed at the children, students, second language learners or people with disabilities.
To align sentence pairs, monolingual sentence alignment, with TF*IDF sentence-
level similarity measure, was applied to Wikipedia articles, which leads to a dataset
consisting of 108 thousand sentence pairs. To also account for sentence spli�ing, the
dataset does not consist of only 1:1 mappings of ”complex” and ”simple” sentences
but also 1:N, meaning that one ”complex” sentence could have multiple simpler
ones.

TurkCorpus is another dataset used for the evaluation of the of the text simpli�ca-
tion. Xu et al. [21] took sentences from the Normal Wikipedia, a subset of PWKP,
which they gave to the workers at Amazon Mechanical Turk 10, a crowdsourcing
marketplace, to be rewri�en manually. �e result is a dataset consisting of 2350
sentences, where each sentence has 8 simpli�cations. �e dataset is then further
split into 2000 sentences used for training and 350 used for result evaluation.

It is important to mention the research done by Xu, Callison-Burch and Napoles
[20], where it was argued that the PWKP dataset is not actually simple and that
about 50% of the sentence pairs are not real simpli�cations. Xu, Callison-Burch
and Napoles [20] also present a new dataset called Newsela. �is dataset consists of
1,130 articles in 5 levels. �ese articles, and their respective simpler versions, were
wri�en by professional editors. �e problem with this dataset is that, even though
it is free, it is forbidden to redistribute, which means sentence alignments are not
available to the public.

Metrics Most popular metrics used for measuring simplicity are SARI (System
Output Against References And Input Sentence), developed by Xu et al. [21] (2016)
and BLEU, developed by Papineni et al. [11] (2002).

10https://www.mturk.com/Amazon Mechanical Turk

9

https://www.mturk.com/

2. Related Work

Text simplification approaches Earlier work on text simpli�cation focused
on handcra�ed rules which did not perform really good and as �eld matured,
more modern, data-driven, approaches came to light. �e current state of the art
approaches mainly consider text simpli�cation as a machine translation or neural
sequence-to-sequence problems.

Two machine translation approaches which deliver the best scores, on the PWKP
dataset, are PMBT-R and Hybrid approach.

PMBT-R, developed by Wubben, Bosch and Krahmer [19], uses phrase based
machine translation to simplify sentences. PMBT-R uses Moses 11 so�ware and
GIZA++ 12 aligner to train the model and align the phrase pairs into a phrase table.
To further improve the simpli�cation of the sentences, the results of the text simpli-
�cation are re-ranked according to their dissimilarity to the source sentence. Out
of N best results, one is chosen which represents the best, according to PMBT-R,
simpli�cation result. According to the survey done by Alva-Manchego, Scarton and
Specia [1], this approach scored the best on TurkCorpus dataset according to the
BLEU metric.

Hybrid approach, developed by Narayan and Gardent [10], combines deep semantics
and monolingual machine translation to simplify sentences. What di�erentiates
this approach to others is that deep semantic representation (DRS) is used as
an input, instead of sentences or parse trees. Hybrid approach consists of three
models which aim to simplify the texts; DRS simpli�cation model, which is applied
�rst and is responsible for spli�ing of the sentences and deletion of the words,
PBMT (phrase based machine translation) model used for �nding the suitable
substitutions and �nally language model (LM), which is there to keep the simpli�ed
sentences grammatically correct. According to the aforementioned survey [1],
Hybrid approach delivers the best result, on the PWKP dataset, according to the
SARI score, while having close second BLEU score on the same dataset.

Despite having high score on the PWKP dataset, Hybrid [1] approach did not
perform as well on the TurkCorpus and was outperformed by all other approaches
described in this work. Alva-Manchego, Scarton and Specia [1] point out that this
might be because metrics, on the TurkCorpus dataset, reward paraphrasing more

11http://www.statmt.org/moses/ Moses So�ware
12http://www.statmt.org/moses/giza/GIZA++.htmlGIZA++

10

http://www.statmt.org/moses/
http://www.statmt.org/moses/giza/GIZA++.html

2.2. State of the Art

than deletion of words and sentence spli�ing, as these paraphrased sentences bear
closer resemblance to the reference solutions from the TurkCorpus dataset.

�e same survey shows that approaches, which use either Paraphrase Database
(PPDB) or Simple PPDB, usually have the best SARI scores when TurkCorpus test
set is used.

Paraphrase Database (PPDB) is database consisting of over 220 million paraphrase
pairs collected by Ganitkevitch, Van Durme and Callison-Burch [8]. Simple PPDB,
collected by Pavlick and Callison-Burch [12], is a subset of PPDB consisting of
4.5 million paraphrase pairs. �ese databases are used as an additional knowledge
about paraphrasing complicated words and phrases.

Two highest scoring approaches, which utilize either PPDB or SPPDB, are DMASS-
DCSS and SBSMT(PPDB+SARI).

DMASS-DCSS, developed by Zhao et al. [22], models text simpli�cation as a neural
sequence-to-sequence problem. It consists of two models Deep Critic Sentence
Simpli�cation (DCSS) and Deep Memory Augmented Sentence Simpli�cation model
(DMASS). DCSS’s purpose is to choose the simpli�ed words with the help of the
loss function. On the other, DMASS is a simpli�cation model with the augmented
memory to store key-value pairs acquired from SPPDB. Even though they are
presented as a two separate models, Zhao et al. [22] show that using DMASS and
DCSS together leads to the best SARI score on the TurkCorpus.

Syntactic based machine translation (SBSMT), developed by Xu et al. [21], combines
monolingual machine translation with paraphrase database. SBSMT (PPDB+SARI)
is also tuned for a speci�c metric, in this case SARI. According to the survey [1],
this approach results in second best SARI score on TurkCorpus.

2.2.2. Annotation tools for NLP

�ere are a lot of annotation tools for natural language processing. �ese tools are
there to annotate the data set, called corpora, which is fed to the machine learning
algorithms. �ese algorithms train the model, by looking at the input and output,

11

2. Related Work

which, in the end, should make predictions about unseen data 13. �e be�er the
data, which is used for model training, the be�er the model will be.

One of these tools is Doccano [9]. It provides features like text classi�cation, se-
quence labeling and sequence to sequence labeling. Doccano is open source and
has a MIT licence, which means that it can be used free of charge. �e interface
is clean and there are shortcuts for faster annotation. To accelerate this process
even further, Doccano also supports team collaboration. It is possible to import
plaintexts or JSON �les. A�er the data has been annotated, it can be exported to
JSON �les, which can later be used to train models.

Brat [17] is another tool used for text annotation. It is web based and open source.
Brat provides a really simple way of adding and connecting annotations, and these
annotations are then visualized in a intuitive way based on the concept of ”what you
see is what you get”. Annotations created can be exported as speci�c brat format
which can then be converted to other formats. Visualizations can be exported as
SVG-s, PNG-s, PDF-s or EPS-s.

While there are a lot more tools, which are used for annotation tasks, to the best
of my knowledge, I was not able to �nd one with features, which are shown in
this thesis. None of these tools provide a way to annotate two texts from di�erent
language levels, do automatic sentence matching and also allow manual intervention
when matching these pairs. An honorable mention should go to Newsela14. �is
website allows users to read articles in multiple levels, but these levels are not
shown side by side, and it also does not allow users to do any annotation tasks and
export data.

13https://docs.microsoft.com/en-us/windows/ai/windows-ml/
what-is-a-machine-learning-model (Accessed on: 2020-12-14)

14https://newsela.com/ (Accessed on: 2020-12-14)

12

https://docs.microsoft.com/en-us/windows/ai/windows-ml/what-is-a-machine-learning-model
https://docs.microsoft.com/en-us/windows/ai/windows-ml/what-is-a-machine-learning-model
https://newsela.com/

3. Use Cases & Requirements

3.1. Personas

Figure 3.1.: Alfred

Alfred is a language expert. He spent his last 20 years reading
books and doing the grammar exercises, which means he can �nd
mistakes in nearly every text. Even in this one. With his special
knowledge, he can make easy sentences really hard, by using
less common words. He was hired for this project to correct texts
that the automatic simpli�cation made. He is really unhappy,
because in a few years he might not have his job anymore and
that is why he refused to use the computer for the past 20 years.
�e last computer he used was in the library, to search for a book

and even though he did �nd it, he did not like that he had to use the computer to
help him. Now he was hired to �x what the computer created and he is really eager
to show that computers can’t do his job. �is now leads to a problem, because he
does not know how to use the computer so this application has to be made user
friendly. �e UI has to be clu�er-free and he would like to just click when he wants
to edit the sentence or match sentences from the original and simpli�ed texts.

Figure 3.2.: Alexan-
der

Alexander is a so�ware developer and tester who will spend his
entire day just watching Net�ix. In the a�ernoon the guilt will
kick in, and he will go to his computer to write code. �is means
that he will be looking at the black text on white background
during the whole night. �is hurts his eyes, so he demanded
that dark mode is implemented, otherwise, he will not test the
application.

13

3. Use Cases & Requirements

Figure 3.3.: Helga

Helga is a scientist, who is helping to develop the algorithms
for automatic sentence matching. She downloaded the plugin for
her favorite editor, which is Atom, that makes JSON �les look
beautiful. �e plugin color codes the matching brackets, formats
the JSON �le, allows collapsing of the code inside brackets, and
a lot more. She fell in love with this plugin and JSON �les in
general and she insists that the output of the �nal article with
matched sentences will be in JSON format.

Figure 3.4.: Man-
fred

Manfred is a programmer who �nished his university in the
80s. Back in his days, you had to write the code on paper, go to
the university, and then wait in line for the computer to be free.
If the programmer made any mistakes on the paper or while he
typed his code, he had to leave early and everybody in the ”line”
knew that he did something wrong. �is ultimately made him a
be�er programmer, and he says that since then he did not make
any errors while programming. �is experience also made him
resent all the new ”kids” who started programming and he thinks

they do not know how to program. He is now responsible for running programs on
their dedicated servers and does not allow anybody to touch it. Sadly for Manfred,
the web application that is presented in this thesis will have to run on his server.
Manfred does not want this app to destroy anything and that is why he demands
that this app is run in Docker containers so when he inevitably stops liking it, he
can just delete it without impacting his system.

Figure 3.5.: Ingrid

Ingrid is a friend of Helga and her assignment is to search for
any annotation mistakes that Helga might have missed. Her
favorite toy as a child was her markers. Later in life, the only
motivation she had for studying, was the thought of highlighting
text. To help with this project, Ingrid was promised that she will
be able to use virtual highlighters to mark the sentence pairs in
her favorite colors.

14

3.2. Use cases

3.2. Use cases

Import text
Priority: High
Description:
�e user should be able to navigate to Import page. �ere, user could import �les
either by dragging and dropping �les, by typing the �lename or using �le picker
to choose any �le on the system.

Fix automatic sentence pairs
Priority: High
Description:
A�er the �le is imported, application will try to construct automatic sentence
pairs. �e algorithm used is very simple so in some cases it might be necessary
to either �x individual sentence pairs or delete all of them, so that the user can
start from scratch. User should see changes that are made instantly. In the end
the user should be able to save all sentence pairs for an article.

Add sentence pairs
Priority: High
Description:
�e user should be able to enter editing mode and click sentences to delete or
to match them. User is able to select multiple sentences and the system should
show the user which sentences are selected. �e user should also be able to clear
current selection of sentences. In the end the user should be able to save all
sentence pairs for an article.

Export sentence pairs
Priority: High
Description:
�e user should be able to export sentence pairs as JSON �le. Sentence pairs
should also contain some metadata about the pairs.

15

3. Use Cases & Requirements

Edit text content
Priority: Medium
Description:
A�er the �le is imported, it might be needed to �x some mistakes which are
caused by faulty �le or mistakes in parsing. User should be able to add, edit,
merge and remove sentences from an article. A�er editing, the user should be
able to save these changes.

Approve text when imported
Priority: Low
Description:
�ere should be separate view for articles which are approved. Approved articles
are ones which are identical to the articles in �le. A�er the �les are imported, art-
icles should be moved to not approved section and then user can, a�er reviewing
the �le, approve them and moved them to approved section.

3.3. Functional Requirements

ID Description Priority
1 Parse only texts with both B1 and A2 High
2 Allow annotators to correct/approve ML proposed candidate pairs High
3 Allow annotators to submit manually extracted candidate pairs High
4 Save annotation results High
5 Show B1 and A2 texts side-by-side High
6 Show articles which are already annotated Medium
7 Dockerize the application Medium
8 Detect if text is body or title Medium
9 Dark mode for website Low
10 Allow users to correct algorithm generated sentence s2 Low
11 Color code the sentences which are paraphrases of each other Low

16

3.4. Mockups

3.4. Mockups

(a) Homepage - showing all articles as
cards. Every card has a bu�on which

opens the article. �ere is also a sidebar
on the le� side, which allows users to

�lter the articles by text mode.

(b) Article View - with two side by side
texts and toolbox in the top right

corner. Matcing sentence pairs are
highlighted with the same color.

Toolbox has bu�ons which allow users
to add and remove sentence pairs, edit
text of the article and a bu�on to export

current sentence pairs as JSON �le.

17

3. Use Cases & Requirements

(c) Selection mode - allows users to click
sentences to match them. Sentences

which selected are bolded. Bo�om bar
consists of bu�ons to clear and save

current selection.

(d) Import View - provides and interface
which allows users to import data. �e

users can drag and drop �les in the
speci�c zone on the page. �e

�lenames, of all �les which are to be
imported, are displayed below the

drag’n’drop zone. �ere is also a bu�on
to upload the �les which are listed

below the drag’n’drop zone.

18

3.4. Mockups

(e) Export View - shows sentence pairs for
the current article as JSON. It is also
possible to save this JSON to a local

machine by clicking the bu�on Save To.

(f) Dark mode - inverts the colors of the
backgroud and the text to allow for

easier reading in dark environments.

19

4. Method

4.1. Concept

4.1.1. Components

Application described in this thesis consists of three components: back-end (server
side), front-end (client side) and the database.

Back-end

(server side) is responsible for communication between front-end and the database.
�e server receives requests from the client and then fetches the required data
from the database. Depending on the type of request, the server can also do some
processing of the data received from the database. Another responsibility of server is
to parse �les that are sent from the client. A�er the �le has been received, back-end
reads the �le and sends the read data to the database according to the underlying
model. Lastly, it is the task of back-end to prepare the data, which will be displayed
in JSON �le, which will then be exported in front-end.

Front-end

(client side) is responsible for presenting graphical user interface (GUI) elements
and the data, which is provided by the back-end. Users are able to navigate the
GUI and send requests to the server by interacting with the system. It is possible
to consume XML �les on the client side and back-end could be removed, which
would mean that front-end could communicate with the database directly. �e
problem with this approach is scalability and performance. In the future, it might

21

4. Method

be necessary to increase the number of clients, which are able to access the system
and annotate �les at the same time, which would lead to a number of problems
with database access and data integrity. Furthermore, it is much faster to send �les
to the dedicated server and process them there.

Database

is a system component where data is stored according to a model. As explained
previously, client cannot directly communicate with the database, but must do so
via back-end.

4.1.2. XML importing

A�er the �le is received from the front-end, XML DOM parsing is used and the
XML �le is transformed to a list of nodes, which can be traversed to access all texts
from a �le. �ese texts are then fed through a method, which separates them into a
list of sentences.

4.1.3. Sentence matching

�e next step of the import process is automatically matching the sentences from
two di�erent text levels. �is is done by calculating Jaccard similarity between all
the sentences and matching ones with highest score. It is important to note that
this value still has to be larger than some threshold. Last step of the process of XML
importing is saving everything to the database.

4.2. Implementation

4.2.1. Database

Database used in this project is PostgreSQL. Since each component of the application
is Dockerized, the only thing that is needed for database setup is to con�gure Docker

22

4.2. Implementation

to run a PostgreSQL container and tell Spring Boot (programming language used for
back-end) how to connect to it (See 4.3 for con�guration). All Docker con�guration
�les are in the Appendix B.

Figure 4.1.: Entity relationship diagram of the database. Main entities are represented in rectangles
together with their respective properties. One Article consists of one or more Sentences
and also zero or more Sentence Pairs. Every Sentence Pair has exactly one Meta entity.

4.2.2. Back-end

Overview and configuration

�e back-end was implemented with Spring Boot. Spring Initializr 1 was used to
quicken the setup process. �e website provides an easy interface where program-
mers choose the dependencies needed and download a zip �le, which contains all
the essential �les to get started. Spring Boot dependencies needed for this project
are shown in Listing 4.1 and explained below the code snippet.

1https://start.spring.io/

23

https://start.spring.io/

4. Method

i m p l e m e n t a t i o n ’ org . spr ing f ramework . boot : s p r i n g −boot − s t a r t e r −data −
j p a ’

i m p l e m e n t a t i o n ’ org . spr ing f ramework . boot : s p r i n g −boot − s t a r t e r −web ’
i m p l e m e n t a t i o n ’ org . modelmapper : modelmapper : 2 . 3 . 8 ’
i m p l e m e n t a t i o n ’ org . spr ing f ramework . boot : s p r i n g −boot − s t a r t e r −

a c t u a t o r ’
compi l e group : ’ org . apache . commons ’ , name : ’ commons− t e x t ’ , v e r s i o n

: ’ 1 . 8 ’
compi leOnly ’ org . p r o j e c t l o m b o k : lombok ’
runt imeOnly ’ org . p o s t g r e s q l : p o s t g r e s q l ’
a n n o t a t i o n P r o c e s s o r ’ org . p r o j e c t l o m b o k : lombok ’
t e s t I m p l e m e n t a t i o n (’ org . spr ing f ramework . boot : s p r i n g −boot − s t a r t e r −

t e s t ’) {
e x c l u d e group : ’ org . j u n i t . v i n t a g e ’ , module : ’ j u n i t − v i n t a g e −

eng ine ’
}

Listing 4.1: All Spring Boot dependencies from build.gradle

Lambok 2 is a Java library which helps to reduce the number of lines wri�en. Instead
of writing ge�ers, se�ers and constructors for every class, the programmer only
needs to annotate a class with �ags. Lambok will then plug itself into the build
process and generate Java bytecode for every annotation �ag used in code.

Apache Commons Text is a library, which provides methods that make text handling
easier. In the application described in this thesis, it is used to calculate similarity
between sentences from di�erent texts. More information about this process is
wri�en in 4.2.2.

Data mapper is a library, which is used to map from one object to another. In this
case, it is used to build the objects, which will be sent from back-end to front-end.
Front-end might not need all the properties of a class, and this is where data mapper
is used to transform full objects to data transfer objects, which will be consumed by
the front-end and be displayed to the end user. An example is shown in the Listing
4.2.
p u b l i c c l a s s A r t i c l e {

p r i v a t e long i d ;
p r i v a t e S t r i n g nameB1 ;
p r i v a t e S t r i n g nameA2 ;
p r i v a t e L i s t <Sentence> B1 ;

2https://projectlombok.org/

24

https://projectlombok.org/

4.2. Implementation

p r i v a t e L i s t <Sentence> A2 ;
p r i v a t e S t r i n g f i l e n a m e ;
p r i v a t e i n t a r t i c l e N o ;
p r i v a t e S t r i n g mode ;
p r i v a t e boo l ean f a u l t y ;

}

p u b l i c c l a s s Ar t i c l eNamesDto {
p u b l i c long I d ;
p u b l i c S t r i n g nameB1 ;
p u b l i c S t r i n g nameA2 ;
p u b l i c S t r i n g f i l e n a m e ;
p u b l i c i n t a r t i c l e N o ;

}
Listing 4.2: Example of the full object and the respective data transfer object (DTO). ArticleNamesDto

does not contain all the properties of the Article as they are not needed.

As already mentioned in Section 4.2.1, to be able to communicate with the data-
base, Spring Boot needs to be con�gured. �is con�guration is stored in applica-
tion.properties and is shown in Listing 4.3.
s p r i n g . j p a . d a t a b a s e =POSTGRESQL
s p r i n g . d a t a s o u r c e . p l a t f o r m = p o s t g r e s
s p r i n g . d a t a s o u r c e . u r l = j d b c : p o s t g r e s q l : / / d a t a b a s e : 5 4 3 2 / db
s p r i n g . d a t a s o u r c e . d r i v e r − c l a s s −name= org . p o s t g r e s q l . D r i v e r
s p r i n g . d a t a s o u r c e . username= p o s t g r e s
s p r i n g . d a t a s o u r c e . password = p o s t g r e s
s p r i n g . j p a . p r o p e r t i e s . h i b e r n a t e . d i a l e c t = org . h i b e r n a t e . d i a l e c t .

P o s t g r e S Q L D i a l e c t
s p r i n g . j p a . h i b e r n a t e . ddl − auto = update

Listing 4.3: Spring Boot con�guration from application.properties

To actually access the database, except running application with con�guration
shown above, it is also needed to create repository interfaces, for every class, which
represents model entity. Writing actual implementation of these interfaces is not
needed, because they are automatically provided by Spring Boot Data JPA.

File importing

XML �les are the primary and only source of data for the application described
in this thesis. As a result, �le importing is one of the most important functional

25

4. Method

requirements. A�er the �le has been received in the back-end, number of
javax.xml.parsers methods are called to parse the XML �le and transform
it to DOM tree, which can be easily traversed.

One characteristic of the data set provided is, that every �le consists of multiple
articles and every set of articles for one language level (for example B1) is wrapped
in DOC tag. �is means that if we check our DOM tree, we can deduce how many
levels there are in the �le. �is is done at the beginning to skip all the �les with
one or more than two levels, as these articles are either unusable (one level texts)
or undesirable (more than two levels). All the �les which pass this check, are then
fed to the methods, which make articles out of children nodes.

As the data set does not provide any way of knowing which paragraph is the title
and which one is the text, this part of the importing process is the most sensitive
and usually the main culprit as to why the application fails to parse the given XML
�le. Importing is done based on assumptions, one being that when looking at the
XML �le, the title should not be longer than two lines, which, when translated to
code, means that if the node has text inside and this text does not contain more
than two characters representing end of line, this means that this text should be a
title. However this rule does not work all the time because some texts might have a
really small last text paragraph, which is not the title. �erefore adjustments were
made, mainly that every time two texts are parsed one a�er the other which are
classi�ed as titles, the last one is used as a title and the previous one is appended to
the previous article as a last paragraph.

A�er the �rst DOC is parsed, meaning the �rst level is parsed, the children of the
second DOC are sent to a di�erent function, which does not create new articles,
but adds the sentences from the second text to the ��ing articles from the �rst
level. Similar to the �rst method, this method also works on some assumptions.
�e assumption here is that every �le should have the same number of articles of
multiple levels, meaning that the �rst article from the �rst level, and the �rst article
from the second level should be about the same topic. However, during the devel-
opment and testing phases, it was shown that a lot of articles have a mismatched
number of paragraphs or articles. �e main reason for the mismatched number of
paragraphs is that sometimes articles have di�cult words and explanations as a
separate paragraph usually, but not always, at the end of the article. �is is easy
to �x as all of these explanations contain the word Erklärung(explanation), so
using Regex to �nd these paragraphs and ignore them solves the problem. On the

26

4.2. Implementation

other hand, if, a�er the parsing, it is shown that a number of articles from the �rst
level and from the second level does not match, it is safe to assume that the �le
either has more or less paragraphs, which do not conform to the format previously
described. �is �le is then rejected and the user is then noti�ed to �x it, or import
it manually.

Sentence matching algorithm

A�er the �le has been stored to the database for the �rst time or a�er every change to
the sentences of the text, the sentence matching algorithm is called. �is algorithm
is really simple and is used to show the functionality of the front-end but also
to show where in the process of importing, new algorithm could be called. Even
though it is basic, depending on the text complexity, it did deliver surprisingly good
results, but the majority of users of the system will probably want to implement
something be�er. �e method, which does the matching �rst, goes through all
the sentences, compares the Jaccard similarity with the sentences from another
language level and stores them in a matrix. New sentence pairs are made with
pairs of sentences where their similarity score, taken from the matrix, is bigger
then some threshold, in this case 0.7. �e similarity of the article titles is always
calculated and stored as a new pair, so even if texts are completely di�erent, there
will be at least one sentence pair.

4.2.3. Front-end

Overview and configuration

Front-end was implemented in React and yarn is the package manager used. For all
dependencies See 4.4.
” d e p e n d e n c i e s ” : {

” a x i o s ” : ” ˆ 0 . 1 9 . 2 ” ,
” b o o t s t r a p ” : ” ˆ 4 . 5 . 2 ” ,
” b o o t s t r a p − swi tch −but ton − r e a c t ” : ” ˆ 1 . 2 . 0 ” ,
” j q u e r y ” : ” ˆ 3 . 5 . 1 ” ,
” r e a c t ” : ” ˆ 1 6 . 1 3 . 1 ” ,
” r e a c t − b o o t s t r a p ” : ” ˆ 1 . 3 . 0 ” ,
” r e a c t −dom ” : ” ˆ 1 6 . 1 3 . 1 ” ,

27

4. Method

” r e a c t −dropzone ” : ” ˆ 1 1 . 2 . 4 ” ,
” r e a c t − i c o n s ” : ” ˆ 3 . 1 0 . 0 ” ,
” r e a c t − p a g i n a t e ” : ” ˆ 6 . 3 . 2 ” ,
” r e a c t − r o u t e r − b o o t s t r a p ” : ” ˆ 0 . 2 5 . 0 ” ,
” r e a c t − r o u t e r −dom ” : ” ˆ 5 . 2 . 0 ” ,
” r e a c t − s c r i p t s ” : ” 3 . 4 . 1 ” ,
” r e a c t − t o a s t i f y ” : ” ˆ 6 . 0 . 8 ” ,
” s t y l e d −components ” : ” ˆ 5 . 1 . 1 ” ,
” t y p e s c r i p t ” : ” ˆ 3 . 9 . 7 ”

} ,

Listing 4.4: React dependencies from package.json

Bootstrap and react-icons are used for styling React components. Dark mode is
made possible with stylized-components.

React router is a collection of components, which are used for navigation of the
GUI.

Axios is a promise based HTTP client used for communication with back-end.

Importing just the test �les leads to more than 900 articles and showing all of them
on one page would make an app unusable. �is is why pagination is implemented
allowing only 5 articles per page to be shown. To make this possible package,
react-paginate is used.

Some of the requests made by the front-end expect some kind of feedback. To be
able to show the messages from the server in the GUI, package react-toastify is
used. �is packages shows a small popup with some information, based on the
response code and message, to help the user check if the action succeeded or failed.
�is library is also used to notify users about the current mode they are in when
they edit the text (sentence matching mode, sentence pairs delete mode, text editing
mode etc.).

React-dropzone is a package used to make drag-’n’-drop zones where �les could be
dropped and from where they are sent to the back-end to be imported.

Implementation details

React is component based framework and props are used to pass the data from one
component to another. Depending on the number of components, which are nested

28

4.2. Implementation

inside each other, there might be a lot of data forwarding between components,
which do not use them. �is problem is called prop drilling. Context is used to solve
this issue. To quote the o�cial React documentation 3, ”Context provides a way to
share values like these between components without having to explicitly pass a prop
through every level of the tree.” �e whole application is wrapped with GeneralState.
�is component has some initial state and it returns <GeneralContext.Provider
value={…} > where prop value is this components state. �is means that every
component can access this global state and subscribe to the changes made to it. In
other words, when some value of the global state changes, every component which
uses it, will be rendered again. �e most important states which are used by most
of the components are shown in Listing 4.5.
c o n s t i n i t i a l S t a t e = {

mode : ’ l i g h t ’ ,
l o a d i n g : f a l s e ,
t ex t mode : ’ raw ’ ,
a r t i c l e s : [] ,
a r t i c l e : {} ,
p a i r s : [] ,
s e l e c t i o n : [] ,
o f f s e t : 0 ,
perPage : 5 ,
c u r r e n t P a g e : 0 ,
t o t a l E l e m e n t s : 0 ,
t e x t E d i t i n g : ’ ’ ,
unsavedChanges : f a l s e ,

} ;

Listing 4.5: GeneralState.js contains all states and data which are accessible to the whole application.

GeneralState is also component where methods for communication with back-end
are located. As already mentioned in the previous paragraph, axios methods are
used to send requests to the server and when the server responds with some data,
reducer4 is used to change the values of the GeneralState. Functions can also be
passed as prop value of the <GeneralContext.Provider>, which implies that every
component can call these methods as needed and thus change the global state.

3https://reactjs.org/docs/context.html#when-to-use-context
(Accessed on: 2020-12-06)

4https://reactjs.org/docs/hooks-reference.html#usereducer (Ac-
cessed on: 2020-12-06)

29

https://reactjs.org/docs/context.html#when-to-use-context
https://reactjs.org/docs/hooks-reference.html#usereducer

4. Method

�e front-end application is split into three main parts: Home page, Article View
page and Import page.

�e Homepage consists of Sidebar, where bu�ons for choosing text modes are
placed, and a list of cards.

Figure 4.2.: Frontpage showing articles as cards with the sidebar on the le� side to �lter and delete
articles by text mode. �e cards contain titles of both language level texts together with
some information about the origin of the article, like the �lename and article number.
�e article number represents the location of the article in the �le, eg. �rst article in the
�le will have a number one.

Text modes can be thought of as a representation of the individual steps of the
process from importing �les, to the �nal JSON �le with sentence pairs. When
articles are imported from �les, they are automatically marked as raw. �is means
that these articles need to be checked by the user to guarantee the correctness of the
data. �is is an important step, because the data set format might not be consistent
throughout the years and there are no de�nite markers, at least with the data set
used to develop this application, which show where one article starts and another
one �nishes. Most of the data import is done based on the assumptions, which
are collected a�er analyzing the data set. Articles are also considered raw because
Regex was used to split sentences of the articles. When the article is checked by

30

4.2. Implementation

the user and is proven to be correct, the user can then approve it, which marks the
text as edited and this text is then hidden from the list of articles which are marked
as raw. �is means that when the article ”lands” in the edited pile of articles, all
the content of the article is correct and sentences of the article are split correctly.
Having said that, this text mode does not say anything about the correctness of the
sentence pairs made by the automatic sentence matching algorithm. �is is still to
be veri�ed by language experts, or any other user. Spli�ing the articles into raw
and edited groups enables easier and faster revision process, because users, who are
responsible for reviewing the sentence pairs, are guaranteed correct articles, and
users, who are responsible for checking the correctness of the articles and article
sentences, are not able to accidentally destroy already approved articles. �e whole
�owchart of the work�ow is shown in Figure 4.3.

As already mentioned, next to Sidebar there is a list of cards. �e cards represent
one article with basic information about the article and the �le from where the
article was fetched. �is is useful because it allows end users to check the imported
article against the actual �le and �x any mistakes that might happen to be there
a�er importing. Additionally, there is also ArticleNo in the header of the cards,
which represents the number of the article in the �lename, and can be used to
further speed up searching for the correct article in the �le. Lastly, cards display
titles of both articles and next to them there is a bu�on, which opens the selected
article. Clicking this leads to a second component of the application which is Article
View page.

Article View page is where both language versions of the article are on display.
�e titles of individual articles are displayed at the top. Below every title there
is a box with respective sentences from the article. Each sentence is displayed
in a separate row to help with the readability and usability of the selection tool.
Sentences, which the automatic algorithm or the user deemed to be paraphrases of
each other, are highlighted in the same color. �ere are two bars, which provide
additional functionality above and below the articles and they are named based on
the location with the respect to the articles eg. Top bar and Bo�om bar.

Top bar consists of bu�ons used for going back to article view, entering sentence
matching mode, editing text content, exporting the JSON with current sentence
pairs and sentence pair deleting mode, which allows users to click the sentence
pair to be deleted when in that mode. One of the most important bu�ons in Top
bar is the aforementioned bu�on for entering sentence matching mode. When in

31

4. Method

Figure 4.3.: �e �owchart showing the full work�ow, from the �le importing to the exporting of
the JSON �le with sentence pairs. �e rectangles with rounded edges represent actions
available to the user. �e rectangles with the blue background represent text modes of
the article. �e ovals represent what is stored in the database, while the rectangles with
the background, other than blue, represent the output of the data.

32

4.2. Implementation

Figure 4.4.: Article View page showing side by side texts from the same article. �e matching
sentences are highlighted with the same color. �e toolbox, on the right side below the
navigation bar, contains bu�ons which, when clicked, enter modes which allow users
to add and remove sentence pairs, edit the content of both texts and export current
sentence pairs as JSON.

33

4. Method

this mode, users are able click the sentences in boxes to match them with their
paraphrases from another article. It is only possible to match sentences, which are
not already matched, but it is possible to select multiple sentences from both texts.
Sentences, which are selected are made bold to provide a visual feedback for the
user. Current sentence pairs are compared with last saved sentence pairs to check if
any changes are done. When changes are detected, two new bu�ons will be shown,
one, which sends current sentence pairs to be saved to the database and another one,
which can clear current changes. Furthermore, when there are unsaved changes, it
is only possible to leave the current view by accepting that unsaved changes will be
discarded, from the alert window, which will pop up on the screen. Once the user
is satis�ed with the matched sentences, clicking the bu�on for exporting sentence
pairs will open modal window where the JSON �le is displayed.

Bo�om bar consists of bu�ons to delete all articles, which have the same �lename,
delete the displayed article and approve the article, which, as already mentioned,
marks it as edited. Out of all the bu�ons located in the bo�om bar, the decision to
include a bu�on, which allows the deletion of all articles with the same �lename,
might seem ridiculous, but there is an explanation as to why this is included. Some-
times it might happen that when importing one �le, some articles get paragraphs
from another article, which will then o�set all articles parsed from that �le. De-
pending on the �le it might then be easier to just import articles from that text
manually or �x the �le in an external editor and import it again. �e reason to
include this bu�on to Bo�om bar is to provide an action which makes sure that all
the articles from that �le name are deleted from the database so that the �le can be
imported once again.

�e last main component is Import page, where tools for �le import are placed and
is shown in the �gure below.

Import page consists of a drag’n’drop zone where users can just drag �les which,
a�er the user clicks submit bu�on, will be sent to the back-end to be imported. It is
also possible to click this zone, which opens a �le manager where users can select
any �le on their computer. A�er the �le has been added to the array, the �lename
will show beneath the zone with the size of the �le. Underneath this list there are
two bu�ons, one for clearing this array and another one, which sends them to the
server.

Lastly, there is the Dismiss All Noti�cations bu�on. To understand the functionality
of this bu�on it is important to remember that package react-toastify is used to

34

4.2. Implementation

Figure 4.5.: Import page contains a special drag’n’drop zone which allows users to drag the �les to
this zone to import them. �e �lenames, of the �les which are to be imported, are listed
below the drag’n’drop zone.

display small noti�cations, so called toasts, with some information. �ese toasts
are usually sent with the information whether the �le has been successfully parsed
or not. If the �le is imported successfully, the toast will only show for 2 seconds
a�er which it will be automatically dismissed. If the �le was not imported, the
noti�cation will not be dismissed automatically to allow users to read the �lename
and �x it or ignore it.

�e React Toast component is placed in the Main.js next to Navbar which means
that it will be visible on all pages, even if the page changes. �e Toast component
is also con�gured to only show 6 toasts at the same time, and when one toast is
dismissed, it will be replaced by the ones, which are were not displayed yet. All
of these con�gurations can make toasts annoying, especially during testing and
developing of the application. �is is why the bu�on Dismiss All Noti�cations was
implemented. It provides a way to clear all toasts and to clear the waiting queue
without restarting the application. It was proved to be really useful during the
development process and this is why it also was not removed in the �nal product.
�is feature might not be needed for all users, so it was placed in Advanced features

35

4. Method

drawer below drag’n’drop zone.
<div>

<ThemeProvider theme ={mode === ’ l i g h t ’ ? l igh tTheme : darkTheme
}>
<G l o b a l S t y l e s />
<Router>

<MyNavbar />
<T o a s t C o n t a i n e r

p o s i t i o n = ’ bottom − r i g h t ’
a u t o C l o s e ={2000}
h i d e P r o g r e s s B a r ={ f a l s e }
newestOnTop={ f a l s e }
r t l ={ f a l s e }
pauseOnFocusLoss
pauseOnHover
l i m i t ={6}
d r a g g a b l e ={ f a l s e }
c l o s e O n C l i c k ={ f a l s e }

/>
<Switch>

. . .
</ Switch>

</ Router>
</ThemeProvider>

</ d iv>

Listing 4.6: Code snippet from Main.js showing Toast con�guration

Figure 4.6.: Examples of fail and success toasts showing information about the import status of the
�les

�e last and probably least useful feature of the front-end part of the application
described in this thesis is dark mode. Dark mode inverts the colors of text and
background, which makes it easier on the eyes in dark environments. It is also
a personal preference for some users, mainly programmers, to use everything in

36

4.3. Back-end API routes

Figure 4.7.: Frontpage in dark mode. Colors of the background and texts are inverted to increase
readability in the dark environments.

dark mode. Dark mode is implemented with the help of styled-components library.
Wrapping everything in �emeProvider component allows every component, which
is below it, to have an access to the theme. With the help of GlobalStyle component
it is possible to toggle theme and doing this will change the colors of GUI elements
from light colors to dark ones and vice versa. To actually toggle the theme, a switch
is added to the far right side of the navigation bar. �e switch also changes the
color based on the mode.

4.3. Back-end API routes

�is section contains a table with all available routes, appropriate methods and a
short description describing what each route does.

Path Method Description
/article GET Get all articles
/article POST Add new article

37

4. Method

/article/fault GET Get names of faulty articles
/article/names GET Get all articles with DTO
/article/names DELETE Delete all articles which have speci�c mode
/article/{id} GET Get article with id
/article/{id}/approve GET Approve article with id
/article/{id}/�lename GET Get �lename of article with id
/article/{id}/pairdtos GET Get sentence pairs DTO of article with id
/article/{id}/pairs GET Get sentence pairs of article with id
/article/{id}/pairs POST New sentence pairs of article with id
/article/{id}/{level} GET Get text of article with id of speci�c level
/import/apa/all GET Import all �les from data folder
/import/apa/move GET Move all �les to data folder from full dataset
/import/apa/multi POST Import multiple �les
/import/apa/stat GET Get stats of all �les from data folder
/import/apa/{�lename} GET Import �le from data folder with �lename

38

5. Evaluation

�e evaluation is split into two parts. �e �rst part is an assessment of the system
with respect to real numbers and the second part is the user evaluation. Users are
�rst provided with a questionnaire where they needed to answer some questions
about themselves and their computer usage habits and experience. Next, the users
are given a number of tasks that they need to solve within a recorded time frame.
Lastly, the users are given another set of questions to evaluate their experience
while using the system. More about the full procedure and about the results of the
user evaluation is wri�en in Section 5.3.

5.1. Data set

Data set used to develop and test this application was provided by APA (Austrian
Press Agency). �e data set consists of 794 XML �les containing news articles in
German. Out of these �les, only 261 of them had only two language levels which
could be used as data. Statistics about the number of �les and how many levels
they have is shown in the table below.

Number of levels Number of �les
One 504
Two 261
�ree 4
Four 26
Five 1

Table 5.1.: Statistics about the data set which is used to develop the application described in this
work. Number of levels represent a number of language levels of the article.

39

5. Evaluation

Even though there are 261 �les which satisfy the required number of levels, some
of these �les are either corrupted or badly forma�ed, so importing them without
any human intervention is not possible. When imported, these 261 �les, without
any interventions, leads to 986 articles. It is important to note that some of these
�le have two levels but the content is the same. As a conclusion not all 986 articles
are useful because exporting sentence pairs with a similarity score of 100 is not
desirable behavior.

5.2. Raw numbers

Importing one �le, which has two language levels and has a couple of sentence
pairs, takes at most 0.3 seconds, while some articles are imported in less than 0.1
seconds. Spring Boot’s stopwatch is used to measure time and this time is measured
from the beginning until the end of the controller method called.

Running import on the whole data set, all 794 �les, takes about 30 seconds. It is
measured from the point when the user clicked the import bu�on, to the point
when back-end shows the last log output in the console, meaning that all the �les
are imported or at least the �les that satisfy all requirements. Times for importing
one �le and all 794 do not match, but that is because for every �le, before actually
creating articles, sentences and sentence pairs, number of language levels is checked.
If the �le does not have exactly two levels, it is discarded immediately. �is speeds
up process of the import signi�cantly.

Memory consumption is measured with the command docker stat as all
components of the system are run in docker containers. Breakdown of average
memory usage is shown in the table below.

Component Memory usage
Back-end 1.5 GB
Front-end 500 MB
Database 20 MB

Table 5.2.: Memory usage of the individual Docker containers while the application is running.

40

5.3. User evaluation

5.3. User evaluation

�e most important evaluation is done by the users. No ma�er how good or bad
the raw numbers are, the users who will use this system will ultimately decide
whether they like it and if they would like to use it.

5.3.1. Participants

User evaluation was done using usability testing. Testing was done with 8 users,
5 female and 3 male. All users were students and most of them had a secondary
school diploma as their highest level of education. For age distribution see Figure
5.1. For main area of study distribution, see Figure 5.2.

20 21 22 23 24 25
0

1

2

3

4

5

Age

N
um

be
ro

fu
se

rs

Figure 5.1.: Age distribution of participants who did user evaluation.

Test users spend on average around 6 hours (µ = 6.25, σ = 2.68) at the computer,
and during that time they usually watch Net�ix, browse the Internet, or use the
computer for studying. Lastly, none of the users had any previous experience
with any annotation tools and were not familiar with anything related to text
simpli�cation or other NLP tasks.

41

5. Evaluation

50%12.5%

12.5%

12.5%
12.5%

Computer Science
Natural Sciences
Global Studies and Classical Guitar
Secondary School Teacher Training
Biomedical Engineering

Figure 5.2.: Main �elds of study of participants who did user evaluation.

5.3.2. Methodology

Users were �rst given a quick questionnaire with some basic questions about
themselves and their computer usage. �e last question is important because it
is used to test the assumption that users who spend a lot of time in front of the
computer usually get familiar with so�ware easier. It is also important to ask this
question to see if UI is user friendly and intuitive, even for people who do not spend
a lot of time in front of computers, and who might not have seen a lot of similar
design pa�erns.

A�er the users answer the �rst part of the questionnaire, they are introduced with
the main concepts of the application they are going to test. �ey are also introduced
to sentence simpli�cation problems and how this application helps to solve the
problem of gathering enough data, in this case sentence pairs. Furthermore, the
basic work�ow is explained; from �le importing, approving the article a�er the
contents of the �le have been crosschecked with the sentences which are parsed
and displayed in the application, and �nally exporting the sentence pairs as JSON
�le. �ey are also shown a diagram with information about the text modes (raw
and edited). Lastly, they were informed that it is not them who are ge�ing tested,
but the system they are using, and the more feedback they provide, the be�er it is,
as this can later be used to improve the system.

Before providing the users with the list of tasks they needed to do, they were
allowed to navigate the system and get to know all the functions that it provides.
�ey were encouraged to try everything and they were also told that some bu�ons

42

5.3. User evaluation

in the GUI have a tool tip when hovered over, so it might be a good idea to try to
read all of them before starting the testing process.

�e main part of the usability testing is the thinking aloud test. In this step users
are given tasks, one by one, and asked to perform the actions they think are
necessary to solve the task. �ey are encouraged to talk about their thinking
process while navigating the system. Users are only provided help, if the time limit
is breached. �is limit is set individually for every task. Time is measured and
results are shown in 5.3.3. �ere were 10 tasks, ranging from simple navigation,
to the ones representing full work�ow; from �le import to sentence matching and
lastly sentence exporting. For the full list of tasks, See Appendix C.

A�er a user �nishes all the tasks, they are given a second part of the questionnaire
were they are asked to write their general opinions, together with the positive and
negative aspects of the application. �e last section of the questionnaire consists of
questions about the systems´ usability and performance together with the 7 point
Likert scale. For the full questionnaire See Appendix D.

Lastly, users were asked to redo the task which represents the full work�ow, in this
case the task number 10, but this time they were given some hints and shortcuts
which could help them �nish the task faster.

5.3.3. Results

Results from the questionnaire and users testing are wri�en in this section.

Users´ answers to the 7-point Likert scale are visualized below. Numbers inside
of the individual pie chart elements represent the number which users choose, on
a scale from -3 to 3. Participants were asked a series of questions relating to the
performance, e�ectiveness and di�culty level of the application described in this
thesis. For performance questions, -3 on a scale means slow, while 3 means fast and
for ease of use questions, -3 means really hard to use, while 3 means quite easy to
use. �e size of the pie chart elements also plays a big role, because the bigger the
element, the more users chose that number on the scale. Colors and their shades
are also used to make the readability of the graph be�er, green was used for the
positive answers, whereas red was used for negative. �e darker the color, the more
it represented each extreme.

43

5. Evaluation

3

2

(a) How fast is the
system navigation

3

2

(b) How fast is the �le
import

3

2 1

(c) How fast is
sentence matching

3

2
1

(d) How easy is to
import �les

32

1
-2

(e) How easy is to
match sentences

2
0-1

-2
-3

(f) How easy is to �nd
speci�c article from

a �le

32

0

(g) How easy is to edit
the content of the

article

Figure 5.3.: Chart showing the answers of the participants to the questions about the application they
tested. �e questions asked are displayed below the individual charts. �e participants
answered these questions on a 7-point Likert scale.

From the charts it is easy to see that most of the users thought the performance of
the whole system is good, in other words opening pages, clicking bu�ons, going

44

5.3. User evaluation

back, all felt really fast and smooth (µ = 2.625, σ = 0.517). Participants also felt
that importing of the �les is immediate with a highly positive response (µ = 2.75,
σ = 0.462). Moreover, all of the participants also regarded the import feature as
positive and had li�le di�culty navigating it (µ = 2.125, σ = 0.834). Although
the speed of sentence matching was graded positively (µ = 2, σ = 0.755), the
easiness of use was not received so well (µ = 1.5, σ = 1.511). �e user who gave
the negative rating stated that the system feature was unnecessarily confusing. �e
lack of any search functionality was not received very well, especially with tasks
which required users to �rst search speci�c articles from a �le. Participants graded
article searching as really bad (µ = −1.5, σ = 1.77). It is important to notice that
users which gave a neutral or positive grade used built in search functionality of
the browsers, but they also expressed that dedicated search bar would be much
more useful. Lastly participants rated easiness of use of tools, which help with
editing the content of the articles, as mostly positive (µ = 1.625, σ = 1.060).

Table 5.3 shows the time it took for a participant to solve a task. Additionally, there
are also two more columns; one showing the average time it took to solve the task
and one showing the time limit set for each task. �e time limit is used to prevent
the test from taking too long, and if users breach them, the task is marked as failed
and this means that the functionality, which is tested with that task, should be
looked at more carefully, to try to make it be�er. It is worth mentioning that not a
single participant exceeded the time limit.

When asked about the positive aspects of the application, participants stated that
they liked the responsiveness of the system and the design. Test users also liked
how easy the system is to use, since they were not provided with any tutorial, just
with custom tooltips.

When asked about the negatives, almost all participants mentioned the lack of
search functionality. Furthermore, the application described in this thesis had two
separate modes, one for creating sentence pairs and one for deleting them, and
some users thought that this is confusing and that it should be possible to do these
tasks in one mode. Lastly, a couple of participants mentioned that the color scheme
should be di�erent for some bu�ons, mainly the bu�ons in the toolbox in Article
View.

45

5. Evaluation

P1 P2 P3 P4 P5 P6 P7 P8 Avg. TL
T1 10s 3s 45s 31s 3s 5s 5s 10s 14s 2m
T2 14s 25s 11s 9s 30s 20s 15s 25s 19s 2m
T3 3m 4m

10s
2m
47s

4m
40s

2m
36s

3m
7s

4m
10s

2m
15s

3m
20s

6m

T4 1m 10s 40s 6s 5s 5s 24s 5s 19s 2m
T5 25s 50s 1m

6s
24s 1m

5s
18s 45s 30s 40s 4m

T6 20s 40s 38s 30s 17s 5s 37s 5s 24s 2m
T7 5s 35s 1m

40s
57 s 10s 25s 1m

4s
15s 39s 2m

T8 1m
15s

45s 1m
40s

57s 1m
21s

1m 1m
14s

30s 1m
25s

4m

T9 10s 5s 10s 5s 11s 4s 15s 5s 8s 2m
T10 1m

35s
1m
22s

1m
40s

1m
12s

1m
21s

1m
9s

2m 1m 1m
24s

6m

Sum 8m
14s

9m
5s

11m
17s

9m
31s

7m
39s

6m
38s

10m
49s

5m
20s

8m
52s

32m

P - participant
T - task
Avg. - average time it took to solve the task
TL - time limit set for a task

Table 5.3.: �e table showing the time it took for each participant to complete the individual tasks,
together with time limit which was set for every task.

46

5.4. Discussion

5.4. Discussion

Focus of the application shown in this thesis is user friendliness for novice users
and performance of the system as a whole.

�e former is important because language experts, who will be employed to su-
pervise automatic sentence matching algorithm and �x the mistakes, might not be
familiar with complex so�ware. As already mentioned, there were 8 participants,
half of whom were computer science students, representing expert users due to
their experience with using a lot of di�erent so�ware. �is experience might help
them to use the system in a more e�cient way and also it might help them to
understand steps in the tasks be�er. �e other half of the users, non computer
science students, represent the novice users. Results shown in the 5.3 show that
both groups took the same amount of time to �nish the provided tasks, meaning
that even users not usually surrounded by similar systems, managed to do the tasks
with the same e�ciency as the expert users. As a result, it could be said that the
application has a low learning curve. Further indicator that the application is novice
friendly is that not a single user exceeded the time limit set for the tasks.

Rating the performance of the application can be done by looking at the raw
numbers shown in section 5.2, or by looking at times measured in table 5.3 together
with the user scores presented as graphs in 5.3.3. It can be concluded that the
participants felt the application is very fast and this can be con�rmed with the raw
numbers.

�e most frequently brought up system �aw is the lack of the search bar, which was
not a speci�ed requirement of the program. In regards to that, the user experience
was probably worsened due to the fact that pagination was implemented with only
�ve articles per page. In my opinion the user experience would not be as bad if there
were more articles per page. �e removal of the pagination could be a potential
solution but we would have to tread lightly with that option, since it might lead to
performance issues. In connection to the search issues, almost all users overlooked
the fact that the article number and �le name were displayed next to the title of the
article, which could help them search for texts faster and make the whole search
experience more enjoyable.

Lastly, the users said that they had li�le to no issues with manipulating the editing
feature of the system. As can be seen in the provided graph, users regarded this

47

5. Evaluation

feature as mostly positive, with two neutral rankings. Although there is no objective
metrics for measuring the correctness of data which is exported, providing users
with the option to edit the content of the articles themselves and being able to
clearly see, in real time, the selected sentence pairs should be enough to prove
that the correctness of the output data is dependent more on the users than the
system.

48

6. Conclusions

�e goal of this thesis was to develop the web app for easy visualization, e�ortless
editing and exporting of the annotated data, without developing any new state-of-
the-art algorithms, which could solve di�cult simpli�cation problem. �e language
experts who will be using this application do not necessarily have to be versed in
any programming language or to be computer experts of any sort. In regards to
that, one of the biggest concerns of the application, aside from its functionality,
was the user friendliness.

All of the set requirements, wri�en in Chapter 3, have been successfully and fully
met, derived from the user testing. �e acquired results, wri�en in Chapter 5,
adequately prove its functionality and simplicity, due to the fact all of the users
successfully completed the tasks, without exceeding the time limit. In addition to
the previous point, users had no o�cial training, only a �ve minutes time frame
where they could explore the application on their own accord.

Specially emphasized were performance and correctness of the sentence pairs. �ese
were the most highly praised aspects of the application, which was described in the
5.3. Although users gave some constructive criticism on the existing application,
none of it was related to its core functionalities and was more inclined to help the
system to be be�er tailored to the users´ speci�c expectations.

�e data, a�er parsing the �les and checking whether sentence matching is correct,
acquired with this application is a step in the right direction on acquiring even
more useful data, which can be used to help machine learning algorithms train the
model. �e more data processed, the be�er the model will be, ultimately improving
automatic sentence matching and overall text simpli�cation in the future.

Lastly, this application could prove bene�cial not only for language experts in
their respective �eld, but also �a�en the learning curve for new language learners
by providing them with a side by side view of the same text wri�en in di�erent
di�culty levels.

49

Appendix

51

Appendix A.

Milestones

A.1. Timeline

Timeline is presented with a GANTT1 chart, please see A.1. For be�er readability,
all milestones are also wri�en in the next section A.2.

Figure A.1.: GANTT chart

1https://en.wikipedia.org/wiki/Ganttchart

53

https://en.wikipedia.org/wiki/Gantt_chart

Appendix A. Milestones

A.2. Listed

• Exposé �nished
– Topic of thesis �nalized and agreed with supervisor
– Dra� version of the chapters:

∗ Introduction chapter
∗ Background chapter
∗ Use cases & Requirements chapter

– Proof of concept for the back end and the parsing of the data
• Literature review �nished

– Final version of the chapters:
∗ Introduction chapter
∗ Related Work chapter
∗ Use cases & Requirements chapter

– Proof of concept for the front end
• Evaluation pipeline established

– Dra� version of the chapters:
∗ Method chapter
∗ Evaluation chapter
∗ Conclusions chapter

– Usability testing
• Finalizing the thesis

– Final versions of all chapters
– Bug �xing and testing of the so�ware
– Finalizing the application

54

Appendix B.

Docker setup

v e r s i o n : ’ 3 . 2 ’
s e r v i c e s :

app :
c o n t a i n e r n a m e : backend
image : backend
b u i l d : . / backend
p o r t s :

− ’ 8 0 8 0 : 8 0 8 0 ’
volumes :

− type : b ind
s o u r c e : . / d a t a
t a r g e t : / d a t a
depends on :

− d a t a b a s e
d a t a b a s e :

c o n t a i n e r n a m e : d a t a b a s e
image : p o s t g r e s
p o r t s :

− ’ 5 4 3 2 : 5 4 3 2 ’
environment :

− POSTGRES PASSWORD= p o s t g r e s
− POSTGRES USER= p o s t g r e s
− POSTGRES DB=db

f r o n t e n d :
c o n t a i n e r n a m e : f r o n t e n d
b u i l d : . / f r o n t e n d
r e s t a r t : a lways
p o r t s :

− ’ 3 0 0 0 : 3 0 0 0 ’
To p r e v e n t the r e a c t from dying a t the s t a r t

55

Appendix B. Docker setup

s t d i n o p e n : t r u e
depends on :

− app

Listing B.1: docker-compose.yml

FROM openjdk :8 − jdk − a l p i n e
VOLUME / tmp
EXPOSE 8080
ADD b u i l d / l i b s / b a c h e l o r a p p − 0 . 1 . j a r app . j a r
ENTRYPOINT [” j a v a ” , ” − Djava . s e c u r i t y . egd= f i l e : / dev / . / urandom ” , ” −

j a r ” , ” / app . j a r ”]

Listing B.2: Docker�le (back-end)

FROM node : 1 3 . 1 2 . 0 − a l p i n e
WORKDIR / app
COPY package . j s o n / app
COPY yarn . l o c k / app
RUN yarn i n s t a l l
COPY . / app
CMD yarn d e v s t a r t
EXPOSE 8000

Listing B.3: Docker�le (front-end)

56

Appendix C.

Tasks

57

Tasks
1. Find all texts which are approved
2. Import file topeasy.APA_20200309.xml located on Desktop
3. Find article with title “Untersuchungs-Ausschuss zu "Ibiza-Video" gestartet” and approve it

after checking the content of the file is correct (XML file was already open in another text
editor)

4. Open any article which filename is topeasy.APA_20200604.xml and export current sentence
pairs as JSON

5. Open article number 2 from articles where filename is topeasy.APA_20200604.xml, and
match “Ohne den neuen Kollektiv-Vertrag wollte Ryanair den Laudamotion-Stützpunkt in
Wien zusperren.” from B1 to “Ryanair will, dass die Mitarbeiter von Laudamotion viel weniger
Geld verdienen als bisher.” and “Sonst sperrt Ryanair den Standort von Laudamotion in Wien
zu.” Lastly save changes

6. Delete all articles where filename is topeasy.APA_20200615.xml
7. Delete article about Wiener Tiergarten
8. Open first article from topeasy.APA_20200309.xml , delete all sentence pairs and save

changes
9. Delete all “raw” articles

10. Find article about Wiener Tiergarten (filename is topeasy.APA_20200604.xml), fix the mistake
where first sentence in both language levels is not split correcty, fix mistake by automatic
sentence matching algorithm (only first sentences should be matched, not first from B1 and
first and second from A2), save changes and call export current sentence pairs

Appendix D.

�estionnaire

59

Questionnaire

Part 1

General questions

1. Name

2. Age

3. Sex

4. Occupation

Education

1. Highest level of education

2. If student write your main area of study

Computer use

1. How many hours do You usually spend at the computer?

2. What do You usually do at the computer?

3. Are You familiar with any annotation tasks?

4. Are You familiar with any annotation tools?

Part 2

System evaluation

Overall impressions

Positive aspects

Negative aspects

How fast is the system navigation

How fast is the importing of file

How fast is sentence matching

How easy is to import file

How easy to match sentences

How easy to find specific article from a file

How easy is to edit the article

Bibliography

[1] Fernando Alva-Manchego, Carolina Scarton and Lucia Specia. ‘Data-Driven
Sentence Simpli�cation: Survey and Benchmark’. In: Computational Linguist-
ics 46.1 (2nd Jan. 2020). Publisher: MIT Press, pp. 135–187. issn: 0891-2017.
doi: 10.1162/coli a 00370. url: https://doi.org/10.
1162/colia00370 (visited on 02/01/2021) (cit. on pp. 10, 11).

[2] Arnaldo Candido et al. ‘Supporting the Adaptation of Texts for Poor Lit-
eracy Readers: a Text Simpli�cation Editor for Brazilian Portuguese’. In:
Proceedings of the Fourth Workshop on Innovative Use of NLP for Building
Educational Applications. Boulder, Colorado: Association for Computational
Linguistics, June 2009, pp. 34–42. url: https://www.aclweb.org/
anthology/W09-2105 (visited on 30/07/2020) (cit. on p. 1).

[3] Yixin Cao et al. ‘Expertise Style Transfer: A New Task Towards Be�er Com-
munication between Experts and Laymen’. In: arXiv:2005.00701 [cs] (May
2020). arXiv: 2005.00701. url: http://arxiv.org/abs/2005.
00701 (visited on 03/07/2020) (cit. on p. 1).

[4] John Carroll et al. ‘Practical Simpli�cation of English Newspaper Text to
Assist Aphasic Readers’. In: In Proc. of AAAI-98 Workshop on Integrating
Arti�cial Intelligence and Assistive Technology. 1998, pp. 7–10 (cit. on p. 1).

[5] R. Chandrasekar, Christine Doran and B. Srinivas. ‘Motivations and Methods
for Text Simpli�cation’. In: COLING 1996 Volume 2:�e 16th International Con-
ference on Computational Linguistics. 1996. url: https://www.aclweb.
org/anthology/C96-2183 (visited on 29/07/2020) (cit. on p. 1).

[6] Jan De Belder and Marie-Francine Moens. ‘Text simpli�cation for children’.
In: (Jan. 2010) (cit. on p. 1).

63

https://doi.org/10.1162/coli_a_00370
https://doi.org/10.1162/coli_a_00370
https://doi.org/10.1162/coli_a_00370
https://www.aclweb.org/anthology/W09-2105
https://www.aclweb.org/anthology/W09-2105
http://arxiv.org/abs/2005.00701
http://arxiv.org/abs/2005.00701
https://www.aclweb.org/anthology/C96-2183
https://www.aclweb.org/anthology/C96-2183

Bibliography

[7] Richard Evans, Constantin Orasan and Iustin Dornescu. ‘An evaluation of
syntactic simpli�cation rules for people with autism’. en. In: (2014). Accep-
ted: 2017-11-21T13:49:11Z Publisher: Association for Computational Lin-
guistics. doi: 10.3115/v1/W14- 1215. url: https://wlv.
openrepository.com/handle/2436/620875 (visited on 28/07/2020)
(cit. on p. 1).

[8] Juri Ganitkevitch, Benjamin Van Durme and Chris Callison-Burch. ‘PPDB:
�e Paraphrase Database’. In: Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies. NAACL-HLT 2013. Atlanta, Georgia: Association
for Computational Linguistics, June 2013, pp. 758–764. url: https://
www.aclweb.org/anthology/N13-1092 (visited on 15/01/2021)
(cit. on p. 11).

[9] Hiroki Nakayama et al. doccano: Text Annotation Tool for Human. So�ware
available from h�ps://github.com/doccano/doccano. 2018. url: https:
//github.com/doccano/doccano (cit. on p. 12).

[10] Shashi Narayan and Claire Gardent. ‘Hybrid Simpli�cation using Deep Se-
mantics and Machine Translation’. In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Pro-
ceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Baltimore, Maryland: Association for
Computational Linguistics, 2014, pp. 435–445. doi: 10.3115/v1/P14-
1041. url: http://aclweb.org/anthology/P14-1041 (vis-
ited on 03/01/2021) (cit. on p. 10).

[11] Kishore Papineni et al. ‘Bleu: a Method for Automatic Evaluation of Ma-
chine Translation’. In: Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics. Philadelphia, Pennsylvania, USA:
Association for Computational Linguistics, July 2002, pp. 311–318. doi: 10.
3115/1073083.1073135. url: https://www.aclweb.org/
anthology/P02-1040 (cit. on p. 9).

[12] Ellie Pavlick and Chris Callison-Burch. ‘Simple PPDB: A Paraphrase Database
for Simpli�cation’. In: Proceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers). ACL 2016. Berlin,
Germany: Association for Computational Linguistics, Aug. 2016, pp. 143–148.

64

https://doi.org/10.3115/v1/W14-1215
https://wlv.openrepository.com/handle/2436/620875
https://wlv.openrepository.com/handle/2436/620875
https://www.aclweb.org/anthology/N13-1092
https://www.aclweb.org/anthology/N13-1092
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.3115/v1/P14-1041
https://doi.org/10.3115/v1/P14-1041
http://aclweb.org/anthology/P14-1041
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040

Bibliography

doi: 10.18653/v1/P16-2024. url: https://www.aclweb.
org/anthology/P16-2024 (visited on 15/01/2021) (cit. on p. 11).

[13] Luz Rello et al. ‘Frequent Words Improve Readability and Short Words Im-
prove Understandability for People with Dyslexia’. en. In: Human-Computer
Interaction – INTERACT 2013. Ed. by Paula Kotzé et al. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 203–219. isbn:
978-3-642-40498-6. doi: 10.1007/978-3-642-40498-615 (cit. on
p. 1).

[14] Ma�hew Shardlow. ‘A Survey of Automated Text Simpli�cation’. In: Inter-
national Journal of Advanced Computer Science and Applications 4 (1st Jan.
2014). doi: 10.14569/SpecialIssue.2014.040109 (cit. on p. 1).

[15] Advaith Siddharthan. ‘A survey of research on text simpli�cation’. In: (2014).
doi: 10.1075/ITL.165.2.06SID (cit. on p. 1).

[16] Advaith Siddharthan. ‘Syntactic Simpli�cation and Text Cohesion’. en. In:
Research on Language and Computation 4.1 (May 2006), pp. 77–109. issn: 1570-
7075, 1572-8706. doi: 10.1007/s11168-006-9011-1. url: http:
//link.springer.com/10.1007/s11168-006-9011-1
(visited on 28/07/2020) (cit. on p. 1).

[17] Pontus Stenetorp et al. BRAT: a web-based tool for NLP-assisted text annotation.
2012. url: http://brat.nlplab.org/index.html (cit. on p. 12).

[18] Willian Massami Watanabe et al. ‘Facilita: reading assistance for low-literacy
readers’. In: Proceedings of the 27th ACM international conference on Design
of communication. SIGDOC ’09. Bloomington, Indiana, USA: Association for
Computing Machinery, 5th Oct. 2009, pp. 29–36. isbn: 978-1-60558-559-8.
doi: 10.1145/1621995.1622002. url: https://doi.org/
10.1145/1621995.1622002 (visited on 29/07/2020) (cit. on p. 1).

[19] Sander Wubben, Antal van den Bosch and Emiel Krahmer. ‘Sentence Sim-
pli�cation by Monolingual Machine Translation’. In: Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). ACL 2012. Jeju Island, Korea: Association for Computational
Linguistics, July 2012, pp. 1015–1024. url: https://www.aclweb.
org/anthology/P12-1107 (visited on 03/01/2021) (cit. on p. 10).

65

https://doi.org/10.18653/v1/P16-2024
https://www.aclweb.org/anthology/P16-2024
https://www.aclweb.org/anthology/P16-2024
https://doi.org/10.1007/978-3-642-40498-6_15
https://doi.org/10.14569/SpecialIssue.2014.040109
https://doi.org/10.1075/ITL.165.2.06SID
https://doi.org/10.1007/s11168-006-9011-1
http://link.springer.com/10.1007/s11168-006-9011-1
http://link.springer.com/10.1007/s11168-006-9011-1
http://brat.nlplab.org/index.html
https://doi.org/10.1145/1621995.1622002
https://doi.org/10.1145/1621995.1622002
https://doi.org/10.1145/1621995.1622002
https://www.aclweb.org/anthology/P12-1107
https://www.aclweb.org/anthology/P12-1107

Bibliography

[20] Wei Xu, Chris Callison-Burch and Courtney Napoles. ‘Problems in Current
Text Simpli�cation Research: New Data Can Help’. In: Transactions of the
Association for Computational Linguistics 3 (1st Dec. 2015). Publisher: MIT
Press, pp. 283–297. doi: 10.1162/tacla00139. url: https://doi.
org/10.1162/tacla00139 (visited on 23/07/2020) (cit. on p. 9).

[21] Wei Xu et al. ‘Optimizing Statistical Machine Translation for Text Simpli-
�cation’. In: Transactions of the Association for Computational Linguistics
4 (2016), pp. 401–415. doi: 10.1162/tacl a 00107. url: https:
//www.aclweb.org/anthology/Q16-1029 (cit. on pp. 9, 11).

[22] Sanqiang Zhao et al. ‘Integrating Transformer and Paraphrase Rules for
Sentence Simpli�cation’. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. EMNLP 2018. Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 3164–3173. doi:
10.18653/v1/D18-1355. url: https://www.aclweb.org/
anthology/D18-1355 (visited on 03/01/2021) (cit. on p. 11).

[23] Zhemin Zhu, Delphine Bernhard and Iryna Gurevych. ‘A Monolingual Tree-
based Translation Model for Sentence Simpli�cation’. In: Proceedings of the
23rd International Conference on Computational Linguistics (Coling 2010).
COLING 2010. Beijing, China: Coling 2010 Organizing Commi�ee, Aug. 2010,
pp. 1353–1361. url: https://www.aclweb.org/anthology/
C10-1152 (visited on 15/01/2021) (cit. on p. 9).

66

https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00139
https://doi.org/10.1162/tacl_a_00107
https://www.aclweb.org/anthology/Q16-1029
https://www.aclweb.org/anthology/Q16-1029
https://doi.org/10.18653/v1/D18-1355
https://www.aclweb.org/anthology/D18-1355
https://www.aclweb.org/anthology/D18-1355
https://www.aclweb.org/anthology/C10-1152
https://www.aclweb.org/anthology/C10-1152

	Abstract
	Introduction
	Related Work
	Background
	XML
	XML DOM Parsing
	JavaScript
	React
	JSON
	Metadata
	Docker
	Spring Boot
	Promise based HTTP client

	State of the Art
	Text simplification
	Annotation tools for NLP

	Use Cases & Requirements
	Personas
	Use cases
	Functional Requirements
	Mockups

	Method
	Concept
	Components
	XML importing
	Sentence matching

	Implementation
	Database
	Back-end
	Front-end

	Back-end API routes

	Evaluation
	Data set
	Raw numbers
	User evaluation
	Participants
	Methodology
	Results

	Discussion

	Conclusions
	Milestones
	Timeline
	Listed

	Docker setup
	Tasks
	Questionnaire
	Bibliography

